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Introduction: 

Daily micturition frequency is a key endpoint for 
assessing overactive bladder disease activity. 

Micturitions are count data and are commonly 
modeled assuming the Poisson distribution,.

Although Poisson process assumes equi-dispersion, 
which means that mean and variance are the same, 
observed within-individual variance is consistently 
lower than within-individual mean micturition 
frequency (Figure 1). 

Being encouraged by a recent study addressing under 
dispersion in Likert pain rating scales [3], we wanted to 
evaluate if the generalized Poisson (GP) that flexibly 
describes under and over dispersion describes 
micturition counts better than the standard Poisson 
(PS) distribution.

Objectives:

To evaluate if the generalized Poisson describes 
micturition counts better than the Poisson distribution.

Figure 2. VPC of Poisson model

Methods:

Data

Placebo micturition count data from 1480 patients 
participating in 7 studies were used.

Model

Micturition counts (mict) were modeled as follows: 
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Where micti,t is the micturition count in the ith

individual at time t. Lognormal between subject 
variability (BSV) was assumed on λ (PS) or λ1 (GP) and 
additive BSV was assumed on Eff (PS, GP). 

FOCE LAPLACE did not prove stable for the generalized 
Poisson model, thus resampling tools were used: SAEM 
followed by MCMC BAYES. The SAEM was merely 
aiming to get some priors, hence 50 burn-in and 50 
sampling iterations were requested:

$EST METH=SAEM LAPLACE -2LL NBURN=50 NITER=50 PRINT=1

The MCM Bayesian option was used for the final 
regression:

$EST METH=BAYES CTYPE=3 NITER=2000 NBURN=2000 PRINT=50 

FILE=run1.bay

In the special case of δ=0, the GP model collapses to a 
PS. Since the likelihood functions for PS and GP are 
exactly the same the OFV of these models can be 
compared.

Models were compared by :

• Objective Function Value (OFV)

• ability to capture mean trends and observed 
variability using Visual Predictive Check (VPC) using 
the vpc tool from Perl-speaks-NONMEM

• precision of parameter estimates.

Figure 3. VPC of Generalized Poisson model

• The GP model was found to be superior to the 

PS model

• GP better described variability observed in 

micturition count data 

• GP yielded more precise estimates but not for 

all parameters.

• As a result, the GP model is expected to 

provide more accurate inferences, such as 

drug efficacy predictions and clinical trial 

simulations.
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Results: 

• The GP model was significantly better than the PS 

model as compared by the lower mean OFV (90382 

vs. 73020) which is a >17,362 point drop (~12 points 

per individual). 

• The mean trend was better captured with the GP 

model. 

• The VPC (Figure 2 and 3) showed that the PS model 

under predicted the 5th and over predicted the 95th 

confidence interval, while the GP model captured 

them remarkably well. 

• Parameter estimates mictbase and k (rate of effect 

onset) were 41 and 46% more precise for the GP 

model. The parameter for placebo effect size was 

25% less precise.

Parameters in green are estimated
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Conclusions
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Thus, a Poisson distribution is a generalized Poisson distribution with 

dispersion factor δ = 0. Mean count and variance are given by:
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Figure 1. Distribution of individual means and variances

Poisson Generalized Poisson

Parameter Estimate SE CV (%) Estimate SE CV (%)

lambda 11.7 0.0823 0.7 19.7 0.144 0.7

delta 0.0 -- -- -0.688 0.00823 1.2

mictbase 11.7 0.0823 0.7 11.54 0.0437 0.4

Eff 0.132 0.0054 4.1 0.119 0.00607 5.1

k (d-1) 0.0649 0.00529 8.2 0.0608 0.00292 4.8

Note: mictbase was derived by λ/(1-δ)

Observed mean and 95% CI in black lines

Predicted mean and 95% PI in red lines


